Application of non-negative matrix factorization to LC/MS data
نویسندگان
چکیده
منابع مشابه
Application of non-negative matrix factorization to LC/MS data
Liquid Chromatography-Mass Spectrometry (LC/MS) provides large datasets from which one needs to extract the relevant information. Since these data are made of non-negative mixtures of non-negative mass spectra, nonnegative matrix factorization (NMF) is well suited for its processing, but it has barely been used in LC/MS. Also, these data are very difficult to deal with since they are usually co...
متن کاملApplication of Non-negative Matrix Factorization to Musical Instrument Classification
In this paper, a class of algorithms for automatic classification of individual musical instrument sounds is presented. Several perceptual features used in general sound classification applications were measured for 300 sound recordings consisting of 6 different musical instrument classes (piano, violin, cello, flute, bassoon, and soprano saxophone). In addition, MPEG-7 basic spectral and spect...
متن کاملApplication of non-negative matrix factorization to multispectral FLIM data analysis
Existing methods of interpreting fluorescence lifetime imaging microscopy (FLIM) images are based on comparing the intensity and lifetime values at each pixel with those of known fluorophores. This method becomes unwieldy and subjective in many practical applications where there are several fluorescing species contributing to the bulk fluorescence signal, and even more so in the case of multisp...
متن کاملBayesian Non-negative Matrix Factorization
We present a Bayesian treatment of non-negative matrix factorization (NMF), based on a normal likelihood and exponential priors, and derive an efficient Gibbs sampler to approximate the posterior density of the NMF factors. On a chemical brain imaging data set, we show that this improves interpretability by providing uncertainty estimates. We discuss how the Gibbs sampler can be used for model ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Signal Processing
سال: 2016
ISSN: 0165-1684
DOI: 10.1016/j.sigpro.2015.12.014